Polarimetric Decomposition and Machine Learning‐Based Classification of L‐ and S‐Band Airborne SAR (LS‐ASAR) Data

نویسندگان

چکیده

The polarimetric Synthetic Aperture Radar (SAR) data sets have been widely exploited for land use cover (LULC) classification due to their sensitivity the structural and dielectric properties of imaging target. In this study, potential fully L- S-band Airborne SAR (LS-ASAR) were explored machine-learning-based Urban, Vegetation, Waterbody, Open Ground. This work was done by utilizing dual-frequency airborne Santa Barbara, California, USA, acquired under (LS ASAR) campaign, a precursor mission space-borne NASA-ISRO (NISAR) mission. LS-ASAR information utilized LULC using SVM classifier. roll-invariant Barnes, eigenvalue/eigenvector-based Cloude H/A/Alpha decomposition implemented retrieve scattering parameters. backscatter response classes studied, separability analysis reduce misclassification error between six class pairs- Vegetation—Urban, Vegetation—Waterbody, Vegetation—Open Ground, Urban—Waterbody, Urban—Open Water—Open models failed achieve desirable index all pairs; consequently, Cloude, showed vegetation-urban class, waterbody-open ground both sets. effort made toward improving accuracy integrating eigenvalue-eigenvector parameters multifrequency set. method presented class-pair; eventually highest achieved i.e. 93.35% ( = 0.91) significantly reducing pairs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

object-oriented and knowledge based classification of polarimetric sar data using polarimetric signature

the major problems of common classification method are their noisy outputs, computational complexity and a lack of expert knowledge in the classification process. this paper proposed an object-oriented and knowledge based method for classification of polarimetric sar data. multi resolution method was selected for image segmentation. also, the main idea to extract knowledge is to use polarimetri...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

Crop Classification with Multitemporal Polarimetric Sar Data

Multitemporal measurements gathered by EMISAR over the Foulum (Jutland) test site and AirSAR over the Wageningen test site provide an unrivalled opportunity to examine the factors affecting classification of northern European agricultural crops using both polarimetric and multitemporal information. Data analysis, guided by physical principles, has been used to investigate those polarimetric fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Earth and Space Science

سال: 2023

ISSN: ['2333-5084']

DOI: https://doi.org/10.1029/2022ea002796